

Seat No.

HB-003-1016033

B. Sc. (Sem. VI) (CBCS) (W.E.F. 2016) Examination

April - 2023

Physics : P-603 (Spectroscopy & Applied Optics) (Old course)

Faculty Code : 003 Subject Code : 1016033

Time : $2\frac{1}{2}$ / Total Marks : 70

Instructions :

1

(1)	All questions are compulsory.
(2)	Symbols have their usual meaning.
(3)	Numbers on the right side indicate marks.
(a)	Answer following objective questions : (1 mark each)
	(1) In normal Zeeman effect, π -component can be observed in parallel view (True/False)
	(2) In Zeeman effect two polarized line can be observed.
	(3) Molecular state of spectral source gives spectra.
	(4) Heated spectral source gives discontinuous spectra.
(b)	Answer any one question :
	(1) What is stark effect ?
	(2) Explain space quantization.
(c)	Answer any one question :

- (1) Explain spin quantum number.
- (2) Explain Paschen-back effect.
- (d) Answer any one in detail :
 - (1) Write a note on vector atom model.
 - (2) Explain vector atom model and normal Zeeman effect.

HB-003-1016033]

[Contd...

4

2

3

5

2	(a)	Answer following objective questions : (1 mark each) (1) In Raman spectra, when Δv is positive such spectral	4
		line is known as line.	
		(2) Rotational vibrational spectra, falls near infra-red radiation. (True/False)	
		(3) In Raman spectra, lines of same frequency as the incident beam is known as lines.	
		(4) Raman shift depends upon incidence frequency. (True/ False)	
	(b)	Answer any one question :	2
		(1) Define stokes and anti-stokes line in terms of Raman shift.	
		(2) Give any two differences between Raman and Fluorescence spectra.	
	(c)	Answer any one question :	3
		(1) Define the types of molecular spectra.	
		(2) Explain only experimental setup of Raman spectra with	
		schematic diagram.	
	(d)	Answer any one in detail :	5
		(1) Explain pure rotational spectra.	
		(2) Explain quantum theory of Raman effect.	
3	(a)	Answer following objectives questions : (1 mark each)	4
		(1) Spontaneous emission is dependent on incident light energy. (True/False)	
		(2) In stimulated emission, σ_{21} is known as	
		(3) He-Ne Laser is a solid state Laser (True/False)	
		(4) The process A+hf \rightarrow A* is represents the emission.	
	(b)	Answer any one question :	2
		(1) Mention the three properties of LASER.	
		(2) What is metastable state ?	
	(c)	Answer any one question :	3
		(1) Discuss the principle of Holography.	
		(2) Explain three level pumping scheme.	
	(d)	Answer any one in detail :	5
		(1) Explain Stimulated emission.	
		(2) Derive the condition for stimulated emission to dominate spontaneous emission.	
TTD	0000	1016099] [Com	+ J

HB-003-1016033]

[Contd...

4	(a)	 Answer following objective questions : (1 mark each) (1) X-ray can be used to study crystal structures because wavelength of X-ray is of the order of (2) There are two types of X-rays produced in X-ray tube, X-ray and X-ray. (3) Bragg's law is 	4
		(4) Height of the peak with increase in potential difference to produce continuous X-ray.	
	(b)	Answer any one question :	2
	. ,	(1) Give four features continuous X-ray spectrum.	
		(2) Find out θ for first order X-ray reflection obtained	
		with X-ray having $1A^{\circ}$ wavelength and interplanar	
		spacing of $1A'$ for particular sets of plane.	
	(c)	Answer any one question :	3
		(1) Give the six important properties of X-rays.	
		(2) Explain characteristic X-rays.	
	(d)	Answer any one in detail :	5
		(1) Explain Laue spot method.	
		(2) Explain Bragg's law.	
5	(a)	Answer following objective questions : (1 Mark each)	4
•	(")	 (1) In Graded index fiber, path length of different modes is compensate by constant velocity of light within the different refractive index. (True/False) 	-
		(2) decides light gathering ability of the optical fiber.	
		(3) Optical fiber is a cylindrical wave guide. (True/False)	
		(4) In order to guide light ray effectively through a fiber, what should be the value of Δ ?	
	(b)	Answer any one question ;	2
		(1) What is fractional refractive index ?	-
		(2) What is 'modes of propagation' ?	
	(c)	Answer any one question :	3
		•	
		(1) Explain intramodal dispersion.	
	(d)	 Explain intramodal dispersion. Define numerical aperture and derive its expression. 	5
	(d)	(1) Explain intramodal dispersion.	5